问:数据洞见名词解释
- 答:数据洞见名词解释:数据洞见是指采用机器学习、数据统计和数据可视化等方法从海量数据中找到“人们并未发现的且有价值的信息”的能力。
例如,当某个具体业务的效率较低时,我们考虑是否可以利用数据提升业务效率,并进一步提出如何通过数据提升的方法。可见,数据分析思维模式与传统思维模脊祥式不同。前者,主要从“数据”入手,最终改变 “业务”;后者从“业务”或“决策”等要素入手,最终改变“数据”。因此,数据分析式思维模式改变了我们通常考虑问题的出发点和视角。从分析对象和目的看,数据分析可以分为3个不同层次。
1、描述性分析(Descriptive Analysis) 是指采用数据统计中的描述统计量、数据可视化等方法描述数据的基本特征,如总和、均值、标准差等。描述性分析可以实现从“数据”到“信息”的转化。
2、预测性分析(PredictiveAnalysis)是指通过因果分析、相关分析等方法“基于过去/当前的数据”得出“潜在模式”、“共性规律”或“未来趋势”。预测性分析可以实现从“信息”到陪搜“知识”的转化。
3、规范性分析(PrescriptiveAnalytics)不仅要利用“当前和过去的数据”,而且还会综合考虑期望结果、所处环境、资源条件等更多影响因素,在对比分析芦野历所有可能方案的基础上,提出“可以直接用于决策的建议或方案”。规范性分析可实现从“知识”到“智慧”的转变。
问:实验数据分析报告怎么写?
- 答:1、确定报告框架
先确定分析报告的主体架构,只有清晰的架构,才能规划好整个报告的主题,结构才能让阅读者一目了然。同时要找准论点、论据,这样能够体现出强大的逻辑性。
2、数据源的获取
数据源是的基础,很多分析报告在进行数据的挖掘收集时,缺乏科学依据性,逻辑性差,保证正确全面的数据源很重要。
3、数据处理
数据处理的目的:从大量的、杂乱无章的数据中抽取出对解决问题有价值、有意义的数据。将多余重复的数据筛选清除,将缺失数据饥稿补充完整,将错误数据纠正或删除。
4、数据分析
结论明确精简:结论要根据数据说话,力求结论做到严谨、专业。每个分析都有结论,而且结论—定要明确,分析结论不要太多要精,—个分析对应—个最重要的结论就好了,分析就是发现问题,只要发现重大的问题就达到目的了。
严谨的推导过程:分析结论—定要基于严谨的数据分析推理过程,不能有丛春猜测性的结论,这是因为主观的东西会没有说服力。
有实际应用性:数据分析报告要客观公正,发现问题并提出解决方案。既然在了解产品并在了解的基础上做了深入的分析,才可能比别人都更清楚地发现了问题以及问题产生的原因,那么在这个基础之上根据自己的知识,做出的建议和结论,就能够让整个过程都十分的有意义。
5、可视化展示
分析数据的时候尽量要用数据说话,选用生动的图表等来展示报告的分析结果,才能够更加直观的展示结论。从而能得到一个更有说服渗肢耐力的结论。