问:笛卡尔的数学故事200—300字
- 答:蜘蛛
1619年,笛卡儿在多瑙河德国南部的一座小城--诺伊堡的军营。这是他一生的转折点,他终日沉迷在深思中,考虑数学和哲学问题。1619年11月10日,白天,笛卡儿生病了,遵照医生的嘱咐,躺在床上休息。突然,笛卡儿眼睛一亮,原来正在天花板上爬来爬去的一只蜘蛛引起了他的注意。这只蜘蛛在常人的眼里或许是平常得不能再平常了,它正忙着在天花板靠近墙角的地方结网,它忽而沿着墙面爬上爬下,忽而顺着吐出丝的方向在空中缓缓移动。
笛卡儿对这只蜘蛛感兴趣,是因为他这时正思索着慧如纳用代数方法来解决几何完体,但遇到了一个困难,便是几何中的点如何才能用代数中的几个数表示出来呢?晚上,他心前没中充满极大的兴奋,带着愉快而又焦急的心情去入睡,使得他接连做噩梦,头脑久久不能平静。凌晨,想着这只悬在半空中的蜘蛛,沉思中的笛卡儿豁然开朗:能不能用两面墙的交线及墙与天花板的交线,来确定它的空间位置呢?他一骨碌橡桐从床上爬起来,在纸上画了三条互相垂直的直线,分别表示两墙面的交线和墙与天花板的交线,用一个点表示空间的蜘蛛,当然可以测出这点到三个平面的距离。这样,蜘蛛在空中的位置就可以准确地标出来了。笛卡儿写道:“第二天,我开始懂得这惊人发现的基本原理。”这就是指他得到了建立解析几何的线索。
后来,由这样两两互相垂直的直线所组成的坐标系,就被人们称之为笛卡儿坐标系。
问:笛卡尔研究几何的出发点是什么?他又是怎样得到解析几何思想?
- 答:笛卡儿得到解析几何思想的,这个问题很难有【正确】的答案的,因为只有其本人才能确切地回答。一般地来说,应该是数与形之间的关系,即代数可以表示数值,几何也可以表示数值,那么这两者之间有一种对应关系。
笛卡尔对数学最重要的贡献是创立了解析几何。在笛卡儿早明樱时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,并成功地将当时完全分开的代数和几何学联系到了一起陆丛。于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础,而微积分又是现代数学的重要基石。解析几何直到现在仍是重要槐启的数学方法之一。
笛卡尔不仅提出了解析几何学的主要思想方法,还指明了其发展方向。在他的著作《几何》中,笛卡尔将逻辑,几何,代数方法结合起来,通过讨论作图问题,勾勒出解析几何的新方法,从此,数和形就走到了一起,数轴是数和形的第一次接触。并向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡尔引入了坐标系以及线段的运算概念。他创新地将几何图形‘转译’代数方程式,从而将几何问题以代数方法求解,这就是今日的“解析几何”或称“座标几何”。
解析几何的创立是数学史上一次划时代的转折。而平面直角坐标系的建立正是解析几何得以创立的基础。直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念可以用代数形式来表示,几何图形也可以用代数形式来表示,于是代数和几何就这样合为一家人了。
此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a, b, c以及未知数x, y, z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
问:笛卡尔几何学很有读的价值吗?
- 答:废话( ⊙ o ⊙ )没读的价值还这么出名O(∩_∩)O~...